terça-feira, 26 de outubro de 2010

Os segredos da Natureza: Matéria


Em física, matéria (vem do latim materia, substância física) é qualquer coisa que possui massa, ocupa lugar no espaço (física) e está sujeita a inércia. A matéria é aquilo que existe, aquilo que forma as coisas e que pode ser observado como tal; é sempre constituída de partículas elementares com massa não-nula (como os átomos, e em escala menor, os prótons, nêutrons e elétrons).
De acordo com as descobertas da física do século XX, também pode-se definir matéria como energia vibrando em baixa frequência. A concepção de matéria em oposição a energia, que perdurava na Física desde a Idade Média, perdeu um pouco do sentido com a descoberta (anunciada em teoria por Albert Einstein) de que a matéria era uma forma de energia.
Podem existir três estados de agregação da matéria, que variam conforme a temperatura e a pressão as quais se submete um corpo: o estado sólido, que é quando as partículas elementares se encontram fortemente ligadas, e o corpo possui tanto forma quanto volume definidos; o estado líquido, no qual as partículas elementares estão unidas mais fracamente do que no estado sólido, e no qual o corpo possui apenas volume definido; e o estado gasoso, no qual as partículas elementares encontram-se fracamente ligadas, não tendo o corpo nem forma nem volume definidos.
Além dos três principais estados de agregação da matéria, há mais dois outros estados. Físicos do final do século XX demonstraram que existe um quarto estado, o plasma, no qual as moléculas já não existem mais e os átomos se encontram desagregados em seus componentes. A temperaturas superiores a 1.000.000 °C, todas as substâncias se encontram no estado de plasma. Em 1925, Albert Einstein, juntamente a um físico indiano de nome Satyendra Nath Bose, previu que havia um quinto estado da matéria, que só se manifestaria em temperaturas baixíssimas, próximas do zero absoluto, valor até então impossível de ser atingido, que equivale a -273,16 °C. O zero absoluto seria exatamente a temperatura de um corpo no qual todos os átomos tivessem parado de se movimentar. O quinto estado da matéria recebeu o nome de
Condensado Bose-Einstein .
Existem dois tipos de propriedades, as propriedades gerais que estão presentes em todos os tipos de matéria e as propriedades específicas que distinguem as substancias.

 Propriedades gerais

    * Extensão: Indica o espaço ocupado pelo corpo. É o mesmo que volume.
    * Impenetrabilidade: Dois corpos não podem ocupar o mesmo lugar no espaço ao mesmo tempo.
    * Mobilidade: Poder de ocupar sucessivamente diferentes posições no espaço.
    * Compressibilidade: Sob ação de uma força o volume da matéria diminui.
    * Elasticidade: Ao cessar a compressão a matéria volta ao seu estado inicial.
    * Inércia: A matéria tende a manter repouso ou movimento a não ser que uma força oposta haja sobre ela.
    * Ponderabilidade: Um corpo quando sujeito a um campo gravitacional, avalia-se pelo peso.
    * Divisibilidade: A matéria pode ser dividida até seus átomos.
    * Indestrutibilidade: A matéria é indestrutível, apenas pode ser transformada ou rearranjada.
    * Energia: A matéria é pura energia, em sua intima estrutura atômica, ela é um edifício de forças.
    * Massa: Pode-se definir ou pesar a matéria.
    * Densidade: É a razão da massa pelo volume.

 Propriedades específicas

    * Porosidade;
    * Estrutura;
    * Dureza, capacidade da materia de riscar outra matéria.
    * Solubilidade;
    * Tenacidade resistencia de uma matéria ao impacto.
    * Calor específico;
    * Condutibilidade, conduz calor ou eletricidade.
    * Magnetismo;
    * Combustão;
    * Hidrólise;
    * Pontos de fusão, condensação, solidificação e ebulição.
    * Ductibilidade, fato que podemos transformar a matéria em fios.
    * Maleabilidade, fato que podemos retorcer (moldar) a matéria.

sexta-feira, 22 de outubro de 2010

Os segredos da Natureza: Clima


O clima (do grego para "inclinação", referindo o ângulo formado pelo eixo de rotação da terra e seu plano de translação) compreende um padrão dos diversos elementos atmosféricos que ocorrem na atmosfera da Terra. Fenômenos como frente frias, tempestades, furacões e outros estão associados tanto às variações meteorológicas preditas pelas leis físicas determinísticas, assim como a um conjunto de variações aleatórias dos elementos meteorológicos (temperatura, precipitação, vento, umidade, pressão do ar) cuja principal ferramenta de investigação é a estatística. As semelhanças em várias regiões da Terra de tipos específicos caracterizam os diversos tipos de clima, para o que são consideradas as variações médias dos elementos meteorológicos ao longo das estações do ano num período de não menos de 30 anos.

 Definição

A definição pelo glossário do IPCC é:
    "
Clima num sentido restrito é geralmente definido como 'tempo meteorológico médio', ou mais precisamente, como a descrição estatística de quantidades relevantes de mudanças do tempo meteorológico num período de tempo, que vai de meses a milhões de anos. O período clássico é de 30 anos, definido pela Organização Mundial de Meteorologia (OMM). Essas quantidades são geralmente variações de superfície como temperatura, precipitação e vento. O clima num sentido mais amplo é o estado, incluindo as descrições estatísticas do sistema global."

A climatologia e o objeto clima

A climatologia é uma especialização da pesquisa meteorológica e geográfica dedicada ao estudo e investigação do clima em seus múltiplos aspectos. Nas ciências atmosféricas, a climatologia investiga as causas e as relações físicas entre os diferentes fenômenos climáticos (por exemplo, os fatores de ocorrência de secas, inundações, ondas de calor, fenômenos El Niño/ENSO, e outros). Na geografia, a climatologia é uma ferramenta de entendimento da relação do homem com seu espaço ambiental, particularmente com os fenômenos atmosféricos, do qual ele é paciente (atingido por vendavais, furacões, tornados, tempestades, enchentes e cheias, por exemplo) e causador (poluição, degradação ambiental, mudança climática devido efeito-estufa e outros). Esses dois pontos de vista, meteorológico e geográfico, complementam-se e não podem ser entendidos de forma separada.

 Diferenças entre clima e tempo

O tempo meteorológico é o tempo atual ou tempo a ser previsto pelos meteorologistas, que se estende no máximo a 15 dias.
O clima é o conjunto de estados do tempo meteorológico que caracterizam o meio ambiente atmosférico de uma determinada região ao longo do ano. O clima, para ser definido, considera um subconjunto dos possíveis estados atmosféricos e, para tal, requer a análise de uma longa série de dados meteorológicos e ambientais. Por longa série se entende um período de dezenas de anos. A Organização Mundial de Meteorologia (WMO) recomenda 30 anos para a análise climática.
A concepção original do que é clima foi introduzida através da análise estatística, de longo prazo, considerada, talvez, no fim do século XIX.

A noção de clima tem mudado ao longo do século XX. Até meados do século XX, o clima era considerado "fixo" na escala de tempo de 30 anos e funcionava como a base da previsão de tempo para as regiões tropicais, então bastante desconhecida. Os trópicos eram considerados regiões onde o tempo meteorológico seria regido pelo clima tropical, isto é, por variações sazonais, por exemplo, as "monções" sazonais, e não pelas variações e flutuações diurnas associadas às passagens de frentes e ou presença de sistemas complexos de tempestades. Assim, o tempo nos trópicos seria apenas perturbado por eventos aleatoriamente distribuídos. A existência de fenômenos como "ondas de leste", sistemas convectivos de tempestades da Zona de Convergência Intertropical (ITCZ) não eram conhecidos.
Hoje,ainda é mais difícil dar uma definição do clima baseada em períodos de 30 anos, embora séries de dados de 30 anos sejam comuns. Nota-se, que ao longo de amostras da série temporal, podem ocorrer variações do valor médio, indicando variabilidade climática. Parte dessas variações encontradas ao longo das dezenas de anos pode ser atribuída a causas antropogênicas. Por exemplo, os primeiros anos do século XXI têm sido mais quentes que os encontrados anteriormente na segunda metade do século XX.
Um dos primeiros estudos sobre o clima, proposto por Wladimir Köppen em 1900, fundamentava-se no sentido de clima como fator da dimensão geográfica. Nessa classificação considerava-se a vegetação predominante como uma manifestação das características do solo e do clima da região, permitindo reunir várias regiões do mundo através de semelhanças de sua vegetação, sendo conhecida como "classificação climática de Köppen-Geiger". Em 1931 Charles Warren Thornthwaite introduziu uma nova classificação e em 1948 amplia os estudos através do balanço de água como um fator do clima, que futuramente daria origem à "classificação do clima de Thornthwaite". Emmanuel de Martonne destacou-se no estudo da geomorfologia climática. Seu estudo sobre problemas morfológicos do Brasil tropical-atlântico foi um dos primeiros trabalhos de geomorfologia climática, sendo conhecida a "classificação do clima de Martonne".


 Fatores climáticos

Os factores climáticos são os elementos naturais e humanos capazes de influenciar as características ou a dinâmica de um ou mais tipos de climas. Para que sejam compreendidos, precisam ser estudados de forma interdisciplinar pois um interfere no outro. São eles:
    *
Pressão atmosférica - variações históricas das amplitudes de pressões endógenas (magma) e exógenas (crosta) do planeta Terra;
    *
Órbita - mudanças cronológicas (geológicas e astrofísicas) nas posições das órbitas terrestres (em graus, minutos, segundos, décimos, centésimos e milésimos de segundos) ocasionam maiores ou menores graus de insolação que modificam as variadas ações calorimétricas (ora incidentes ou deferentes) no planeta Terra (dificilmente perceptíveis aos humanos);
    *
Latitude - distância em graus entre um local até a linha do equador;
    *
Altitude - a distância em metros entre uma cidade localizada em um determinado ponto do relevo até o nível do mar (universalmente considerado como o ponto ou nível médio em comum para medidas de altitudes);
    *
Maritimidade - corresponde à proximidade de um local com o mar;
    *
Continentalidade - corresponde à distância de um local em relação ao mar, permitindo ser mais influenciado pelas condições climáticas provenientes do próprio continente;
    *
Massas de ar - parte da atmosfera que apresenta as mesmas características físicas (temperatura, pressão, umidade e direção), derivadas do tempo em que ficou sobre uma determinada área da superfície terrestre (líquida ou sólida);
    *
Correntes marítimas - grande massa de água que apresenta as mesmas características físicas (temperatura, salinidade, cor, direção, densidade) e pode acumular uma grande quantidade de calor e, assim, influenciar as massas de ar que se he sobrepõem;
    *
Relevo - presença e interferências de montanhas e depressões nos movimentos das massas de ar;
    *
Vegetação - emite determinadas quantias de vapor de água, influenciando o ciclo hidrológico de uma região.
     A presença de megalópoles ou de extensas áreas rurais, as quais modificaram muito a paisagem natural, como por exemplo a Grande São Paulo, a Grande Rio de Janeiro, Tokkaido, a megalópole renana e Bos-wash, influenciando o clima local.

 Tipos de clima
    * Tropical
    * Subtropical
    * Equatorial
    * Mediterrâneo
    * Temperado
    * Oceânico
    * Continental
    * Alpino
    * Polar
    * Árido
    * Semiárido

segunda-feira, 18 de outubro de 2010

Os Segredos da Natureza: Efeito estufa

O efeito estufa  é um processo que ocorre quando uma parte da radiação solar refletida pela superfície terrestre é absorvida por determinados gases presentes na atmosfera. Como consequência disso, o calor fica retido, não sendo libertado para o espaço. O efeito estufa dentro de uma determinada faixa é de vital importância pois, sem ele, a vida como a conhecemos não poderia existir. Serve para manter o planeta aquecido, e assim, garantir a manutenção da vida.
O que se pode tornar catastrófico é a ocorrência de um agravamento do efeito estufa que destabilize o equilíbrio energético no planeta e origine um fenómeno conhecido como aquecimento global. O IPCC (Painel Intergovernamental para as Mudanças Climáticas, estabelecido pelas Organização das Nações Unidas e pela Organização Meteorológica Mundial em 1988) no seu relatório mais recente diz que a maior parte deste aquecimento,observado durante os últimos 50 anos, se deve muito provavelmente a um aumento dos gases do efeito estufa.
Os gases de estufa (dióxido de carbono (CO2), metano (CH4), Óxido nitroso (N2O), CFC´s (CFxClx) absorvem alguma radiação infravermelha emitida pela superfície da Terra e radiam por sua vez alguma da energia absorvida de volta para a superfície. Como resultado, a superfície recebe quase o dobro de energia da atmosfera do que a que recebe do Sol e a superfície fica cerca de 30 °C mais quente do que estaria sem a presença dos gases «de estufa».
Um dos piores gases é o metano, cerca de 20 vezes mais potente que o dióxido de carbono,é produzido pela flatulência dos ovinos e bovinos, sendo que a pecuária representa 16% da poluição mundial. Cientistas procuram a solução para esse problema e estão desenvolvendo um remédio para tentar resolver o caso. Na Nova Zelândia pensou-se em cobrar-se taxas por vaca, para compensar o efeito dos gases emitidos.
Ao contrário do significado literal da expressão «efeito estufa», a atmosfera terrestre não se comporta como uma estufa (ou como um cobertor). Numa estufa, o aquecimento dá-se essencialmente porque a convecção é suprimida. Não há troca de ar entre o interior e o exterior. Ora acontece que a atmosfera facilita a convecção e não armazena calor: em média, a temperatura da atmosfera é constante e a energia absorvida transforma-se imediatamente na energia cinética e potencial das moléculas que existem na atmosfera. A atmosfera não reflete a energia radiada pela Terra. Os seus gases, principalmente o dióxido de carbono, absorvem-na. E se radia, é apenas porque tem uma temperatura finita e não por ter recebido radiação. A radiação que emite nada tem que ver com a que foi absorvida. Tem um espectro completamente diferente.
O efeito estufa, embora seja prejudicial em excesso, é na verdade vital para a vida na Terra, pois é ele que mantém as condições ideais para a manutenção da vida, com temperaturas mais amenas e adequadas. Porém, o excesso dos gases responsáveis pelo Efeito Estufa, ao qual desencadeia um fenómeno conhecido como Aquecimento Global, que é o grande vilão.
O problema do aumento dos gases estufa e sua influência no aquecimento global, tem colocado em confronto forças sociais que não permitem que se trate deste assunto do ponto de vista estritamente científico. Alinham-se, de um lado, os defensores das causas antropogênicas como principais responsáveis pelo aquecimento acelerado do planeta. São a maioria e omnipresentes na mídia. Do outro lado estão os "céticos", que afirmam que o aquecimento acelerado está muito mais relacionado com causas intrínsecas da dinâmica da Terra, do que com os reclamados desmatamento e poluição que mais rápido causam os efeitos indesejáveis à vida sobre a face terrestre do que propriamente a capacidade de reposição planetária.

Ambos os lados apresentam argumentos e são apoiados por forças sociais.

A poluição dos últimos duzentos anos tornou mais espessa a camada de gases existentes na atmosfera. Essa camada impede a dispersão da energia luminosa proveniente do Sol, que aquece e ilumina a Terra e também retém a radiação infravermelha (calor) emitida pela superfície do planeta. O efeito do espessamento da camada gasosa é semelhante ao de uma estufa de vidro para plantas, o que originou seu nome. Muitos desses gases são produzidos naturalmente, como resultado de erupções vulcânicas, da decomposição de matéria orgânica e da fumaça de grandes incêndios. Sua existência é indispensável para a existência de vida no planeta, mas a densidade atual da camada gasosa é devida, em grande medida, à atividade humana. Em escala global, o aumento exagerado dos gases responsáveis pelo efeito estufa provoca o aquecimento do global, o que tem consequências catastróficas. O derretimento das calotas polares, dos chamados "gelos eternos" e de geleiras, por exemplo, eleva o nível das águas dos oceanos e dos lagos, submergindo ilhas e amplas áreas litorâneas densamente povoadas. O super aquecimento das regiões tropicais e subtropicais contribui para intensificar o processo de desertificação e de proliferação de insetos nocivos à saúde humana e animal. A destruição de habitats naturais provoca o desaparecimento de espécies vegetais e animais. Multiplicam-se as secas, inundações e furacões, com sua sequela de destruição e morte.
O mecanismo que mantém aquecido o ambiente das estufas de vidro é a restrição das perdas convectivas quando o ar é aquecido pelo contato com solo que por sua vez é aquecido pela radiação solar. No entanto, o chamado «efeito de estufa» na atmosfera não tem que ver com a supressão da convecção. A atmosfera facilita a convecção e não armazena calor: absorve alguma da radiação infravermelha emitida pela superfície da Terra e radia por sua vez alguma da energia absorvida de volta para a superfície. Como resultado, a superfície recebe quase o dobro de energia da atmosfera do que a que recebe do Sol e a superfície fica cerca de 30 °C mais quente do que estaria sem a presença da atmosfera.
Toda a absorção da radiação terrestre acontecerá próximo à superfície, isto é, nas partes inferiores da atmosfera, onde ela é mais densa, pois em maiores altitudes a densidade da atmosfera é baixa demais para ter um papel importante como absorvedor de radiação (exceto pelo caso do ozono). O vapor de água, que é o mais poderoso dos gases estufa, está presente nas partes inferiores da atmosfera, e desta forma a maior parte da absorção da radiação se dará na sua base. O aumento dos gases estufa na atmosfera, mantida a quantidade de radiação solar que entra no planeta, fará com que a temperatura aumente nas suas partes mais baixas. O resultado deste processo é o aumento da radiação infravermelha da base da atmosfera, tanto para cima como para baixo. Como a parte inferior (maior quantidade de matéria) aumenta mais de temperatura que o topo, a manutenção do balanço energético (o que entra deve ser igual ao que sai) dá-se pela redistribuição de temperaturas da atmosfera terrestre. Os níveis inferiores ficam mais quentes e os superiores mais frios. A irradiação para o espaço exterior se dará em níveis mais altos com uma temperatura equivalente a de um corpo negro irradiante, necessária para manter o balanço energético em equilíbrio.

 As causas do aumento das emissões dos gases estufa

A fossilização de restos orgânicos (vegetais e animais) ocorreu ao longo da história da Terra, mas a grande quantidade preservada por fossilização ocorreu a partir do início do período Carbonífero, entre 350 e 290 milhões de anos antes do presente, em uma forma mais ou menos pura de carbono, isenta de agentes oxidantes. Este material está preservado sob a forma de carvão mineral. A partir de cerca de 200 milhões de anos começou a preservar-se o petróleo e o gás natural; estes materiais são compostos de carbono e hidrogénio. Resumindo, o carbono e o hidrogénio, combustíveis, são isolados do meio oxidante, preservando a sua potencialidade de queimar em contato com o oxigénio, produzindo vários gases do efeito estufa, sendo o dióxido de carbono e o metano os mais importantes. O metano é um gás com potencial de efeito estufa cerca de 20 vezes mais potente que o gás carbónico (dióxido de carbono). O metano é um gás, na maior parte primordial, emitido principalmente pelos vulcões de lama, pela digestão dos animais e decomposição do lixo. O metano é oxidado em regiões de vulcões de lava, tornando-se gás carbónico.
Tanto o carvão mineral quanto o petróleo e o gás natural são chamados, no jargão dos engenheiros e ambientalistas, de fontes não renováveis de energia. A energia produzida por geradores eólicos, células solares, biomassa, hidroelétricas, etc, são consideradas fontes renováveis.
A Revolução Industrial, iniciada na Europa no século XVIII, provocou a exumação do carvão enterrado há milhões de anos, em proporções gigantescas, com o objetivo de girar as máquinas a vapor recém inventadas. A produção de carvão mineral ainda é muito grande. Para se ter uma ideia do volume de carvão que necessita ser minerado no mundo, basta dizer que 52% de toda a energia elétrica consumida nos Estados Unidos são provenientes da queima de carvão mineral. Proporções semelhantes ou ainda maiores são utilizadas na China, Rússia e Alemanha. Considerando o consumo atual e futuro, calcula-se que ainda exista carvão para mais 400 anos.
Com o advento da produção em escala industrial dos automóveis, no início do século XX, iniciou-se a produção e o consumo em massa do petróleo e, de utilização mais recente, o gás natural na produção da energia elétrica, aquecimento doméstico e industrial e no uso de automóveis.
O processo da queima de combustíveis fósseis criou condições para a melhoria da qualidade de vida da humanidade, porém produz como resíduo o dióxido de carbono e outras substância químicas, também muito poluidoras.

Os gases produzidos pela queima de combustíveis fósseis seguem vários caminhos: parte é absorvida pelos oceanos e entra na composição dos carbonatos que constituem as carapaças de muitos organismos marinhos ou é simplesmente dissolvida na água oceânica e finalmente depositada no assoalho oceânico como carbonatos. À medida que estes animais vão morrendo, depositam-se no fundo do mar, retirando o carbono, por longo tempo, do ciclo geoquímico. Outra parte é absorvida pelas plantas que fazem a fotossíntese, tanto marinhas (algas e bactérias) como pelas florestas, ao qual transformam o carbono coletado da atmosfera em material lenhoso, reiniciando o ciclo de concentração e fossilização dos compostos carbonosos, se as condições ambientais locais assim o permitirem. O que interessa aqui, no entanto, é que uma parte importante do dióxido de carbono concentra-se na atmosfera.
A maior parte do aumento do dióxido de carbono ocorreu nos últimos 100 anos, com crescimento mais acentuado a partir de 1950. As melhores previsões para os próximos 100 anos (isto é, para o ano de 2100) estão sendo realizadas pelos pesquisadores do IPCC -Intergovernmental Panel on Climate Change, patrocinado pela ONU.
No melhor dos cenários, a emissão anual de CO2 no ano de 2100 será de cinco teratoneladas (1012 toneladas) de carbono, com uma concentração de 500 ppmpv (partes por milhão por volume) de CO2, um aumento de temperatura de cerca de 1,5 °C e um aumento do nível médio dos mares de 0,1 m.
Nos piores cenários (os negócios mantidos como são nos dias de hoje), a emissão anual de CO2 em 2100 será de 30 Gton, a concentração de CO2 atingirá 900 ppmpv, a temperatura média da terra estará entre 4,5 °C e 6,0 °C mais elevada e o nível médio dos mares terá subido 90 centímetros.
A temperatura aumentou em média 0,7 °C nos últimos 140 anos, e pode aumentar mais 5 °C até o ano 2100. "A emissão exagerada de gases causadores do efeito estufa está provocando mudanças climáticas. A dificuldade é separar o joio do trigo", explica Gilvan Sampaio. Existem ciclos naturais de mudanças de temperatura na Terra e é difícil entender quanto desse aumento foi natural e quanto foi consequência de ações humanas. Com o objetivo de diminuir as emissões de gases de efeito estufa, o Protocolo de Quioto, assinado por 84 países, determina uma redução de, em média, 5,2%. O debate em torno do protocolo evidenciou as diferenças políticas entre Europa e Estados Unidos, que mesmo sendo o maior poluidor do planeta não entrou no acordo. "Os europeus vêm sofrendo há décadas com as consequências da poluição, como as chuvas ácidas, e com episódios climáticos atípicos,como grandes enchentes. Os países da Europa vêm desenvolvendo alternativas não-poluentes como energia eólica,que já configuram parte importante da matriz energética de alguns deles", diz o geólogo Alex Peloggia, especialista em política internacional.

 História do desenvolvimento da teoria do efeito estufa

Depois disso, deve-se comentar um pouco da história do descobrimento do "efeito estufa" e seus desdobramentos científicos e políticos ao longo do tempo.
Jean-Baptiste Fourier, um famoso matemático e físico francês do século XIX, foi o primeiro a formalizar uma teoria sobre o efeito dos gases estufa, em 1827. Ele mostrou que o efeito de aquecimento do ar dentro das estufas de vidro, utilizadas para manter plantas de climas mais quentes no clima mais frio da Europa, se repetiria na atmosfera terrestre. Em 1860, o cientista britânico John Tyndall mediu a absorção de calor pelo dióxido de carbono e pelo vapor d' água. Ele foi o primeiro a introduzir a idéia que as grandes variações na temperatura média da Terra que produziriam épocas extremamente frias, como as chamadas "idades do gelo" ou muito quentes (como a que ocorreu na época da transição do Cretáceo para o Terciário), poderiam ser devidas às variações da quantidade de dióxido de carbono na atmosfera.
No seguimento das pesquisas sobre o efeito estufa, o cientista sueco Svante Arrhenius, em 1896, calculou que a duplicação da quantidade de CO2 na atmosfera aumentaria a sua temperatura de 5 a 6 °C. Este número está bastante próximo do que está sendo calculado com os recursos científicos atuais. Os relatórios de avaliação do Intergovernmental Panel on Climate Change 2001 situam estes números entre 1,5 °C - melhor dos cenários e 4,5 °C - no pior, com uma concentração de cerca de 900 ppm de CO2 na atmosfera no ano de 2100.O passo seguinte na pesquisa foi dado por G. S. Callendar, na Inglaterra. Este pesquisador calculou o aquecimento devido ao aumento da concentração de CO2 pela queima de combustíveis fósseis. Pesquisadores estadunidenses, no final da década de 1950 (século XX) observaram que, com o aumento de CO2 na atmosfera, os seres humanos estavam conduzindo um enorme (e perigoso) experimento geofísico.
A medição de variação do CO2 na atmosfera iniciou-se no final da década de 1950 no observatório de Mauna Kea no Havaí, depois que os EUA lançaram em seu primeiro satélite espacial (?X?) no Cinturão Van Allen.
Segundo o cientista social e diretor de pesquisas do Centre National de la Recherche Scientifique (CNRS), Michael Löwy, o enfrentamento das disputas relativas aos problemas climáticos, assim como da questão ambiental em geral, requer uma mudança nos próprios fundamentos da economia, com alteração dos nossos hábitos de consumo e da nossa relação com a natureza.

quarta-feira, 13 de outubro de 2010

Os Segredos da Natureza: Nuvem

Nuvem é um conjunto visível de partículas diminutas de gelo ou água em seu estado líquido ou ainda de ambos ao mesmo tempo (mistas), que se encontram em suspensão na atmosfera, após terem se condensado ou liquefeito em virtude de fenômenos atmosféricos. A nuvem pode também conter partículas de água líquida ou de gelo em maiores dimensões e partículas procedentes, por exemplo, de vapores industriais, de fumaças ou de poeiras.
As nuvens apresentam diversas formas, que variam dependendo essencialmente da natureza, dimensões, número e distribuição espacial das partículas que a constituem e das correntes de ventos atmosféricos. A forma e cor da nuvem depende da intensidade e da cor da luz que a nuvem recebe, bem como das posições relativas ocupadas pelo observador e da fonte de luz (sol, lua, raios) em relação à nuvem.
Índice

  

 Constituição das nuvens

As nuvens são constituídas por gotículas de água condensada, oriunda da evaporação da água na superfície do planeta, ou cristais de gelo que se formam em torno de núcleos microscópicos, geralmente de poeira suspensa na atmosfera.
Após formadas, as nuvens podem ser transportadas pelo vento, tanto no sentido ascendente quanto descendente. Quando a nuvem é forçada a se elevar ocorre um resfriamento e as gotículas de água podem ser total ou parcialmente congeladas. Quando os ventos forçam a nuvem para baixo ela pode se dissipar pela evaporação das gotículas de água. A constituição da nuvem depende, então, de sua temperatura e altitude, podendo ser constituídas por gotículas de água e cristais de gelo ou, exclusivamente, por cristais de gelo em suspensão no ar úmido.
 Formação de nuvens
 
As nuvens formam-se a partir da condensação do vapor de água existente em ar úmido na atmosfera. A condensação inicia-se quando mais moléculas de vapor de água são adicionadas ao ar já saturado ou quando a sua temperatura diminui. É o arrefecimento de ar úmido que se eleva na atmosfera que dá origem à formação de nuvens. A elevação do ar é um processo chave na produção de nuvens que pode ser produzido por convecção, por convergência de ar, por elevação topográfica ou por levantamento frontal.
Existem nuvens formadas devido ao resfriamento do ar úmido que faz com que a água se condense, outras devido à subida e expansão do ar, quando ele sobe para níveis onde a pressão atmosférica é progressivamente menor e se expande, consumindo energia que é absorvida do calor contido no próprio ar, fazendo com que a temperatura diminua. Este fenômeno é conhecido por resfriamento adiabático. A condensação e congelamento ocorrem em torno de núcleos de condensação microscópicos, como partículas de poeira, processos que resultam no resfriamento adiabático, seguido pela criação de uma corrente de ar ascendente.
Uma vez formada, a nuvem poderá evoluir, crescendo ou se dissipando. A dissipação da nuvem é resultado da evaporação das gotículas de água, que a compõem, em razão de um aumento de temperatura em virtude da mistura do ar no qual ela está contida com outra massa de ar mais aquecida, o que é conhecido como aquecimento adiabático, ou pela mistura com uma massa de ar seco.
Em outras ocasiões uma nuvem pode surgir quando uma certa massa de ar é forçada a deslocar-se para cima acompanhando o relevo do terreno. Essas nuvens,conhecidas como "nuvens de origem orográfica", também ocorrem em virtude da condensação do vapor de água pelo resfriamento adiabático do ar.
Quando uma porção de ar se eleva, expande-se. E essa expansão é adiabática e resulta numa perda de energia que faz com que a sua temperatura baixe de cerca de 9,8 °C por cada quilômetro de elevação.
Quando uma bolha de ar sobe, passa de uma altitude em que a pressão atmosférica é maior para outra em que ela é menor. Como a pressão exterior diminui, a bolha de ar expande-se, aumentando o seu volume. Como o ar é um bom isolante térmico podemos considerar que toda a energia dispendida para a expansão ("empurrando o ar ambiente à sua volta") vem das moléculas dentro da própria bolha de ar, ou seja, que a expansão é um processo adiabático. Podemos ignorar as fugas para o exterior e considerar que o ar se esfria apenas por descompressão: a temperatura diminui,se reduz a pressão e vice versa. As moléculas de ar perderão alguma energia cinética e o ar arrefecerá. A taxa de arrefecimento é aproximadamente constante: cerca de 9,8 °C/km para ar seco (não saturado). Quando o ar desce, é comprimido e aquece também segundo a mesma taxa (9,8 °C/km).
O arrefecimento do ar traduz o fato de que a velocidade média das suas moléculas diminui, aumentando a probabilidade de que as moléculas livres de vapor se liguem a moléculas vizinhas, passando ao estado líquido por condensação. Isso leva à diminuição do valor máximo de vapor que pode estar presente no ar, ou seja, provoca um aumento da sua umidade relativa. Se a temperatura desce até ao chamado ponto de orvalho, a densidade de vapor é a máxima, igual à de saturação. A partir desse momento qualquer arrefecimento resultará em que o vapor em excesso tenha que ser removido por condensação, formando-se gotículas de água que podem formar nuvens.
A condensação do vapor começa a ocorrer na base da nuvem, a que, por isso, se chama «o nível de condensação». Se a temperatura de ponto de orvalho é negativa (nesse caso, chama-se-lhe também o ponto de geada), o vapor pode passar directamente ao estado sólido sob a forma de cristais de gelo, por sublimação. Quando uma molécula livre se liga às vizinhas, perde energia cinética que é libertada para o ambiente sob a forma de calor latente (cerca de 600 calorias por cada grama de vapor de água condensada). As nuvens formam-se a partir da condensação do vapor de água existente em ar úmido na atmosfera. A condensação inicia-se quando mais moléculas de vapor de água são adicionadas ao ar já saturado ou quando a sua temperatura diminui.

    * Estratiformes - nuvens de desenvolvimento horizontal, cobrindo grande área; apresentam pouca espessura; dão origem a precipitação de caráter leve e contínuo.
    * Cumuliformes - nuvens de desenvolvimento vertical, em grande extensão; surgem isoladas; dão origem a precipitação forte, em pancadas e localizadas.
    * Cirriformes - nuvens de desenvolvimento horizontal. São fibrosas, de aspecto frágil e ocupam as altas atmosferas. São formadas por cristais de gelo minúsculos e não dão origem a precipitação; porém elas são fortes indicativos de precipitação.

 Quanto à constituição

    * Sólidas - Podendo conter gelo até mesmo de tamanho elevado, chegando a pesar 1 tonelada, se em nuvens chamadas de negras ou tremulas.
    * Líquidas - constituídas basicamente por gotículas de água.
    * Mistas - constituídas tanto por gotículas de água quanto cristais de gelo.

 Quanto ao estágio (altura)

De acordo com o Atlas Internacional de Nuvens da OMM (Organização Meteorológica Mundial) existem três estágios ou grupo de alturas de nuvens:

    * Altas - base acima de 6 km de altura - constituídas por nuvens sólidas.
    * Médias - base entre 2 a 4 km de altura nos pólos, entre 2 a 7 km em latitudes médias, e entre 2 a 8 km no equador - podendo ser nuvens líquidas ou mistas.
    * Baixas - base até 2 km de altura - constituídas de nuvens líquidas.

 Tipos de nuvens


    * Cirrus (Ci): aspecto delicado, sedoso ou fibroso, cor branca brilhante. Ficam a 8 mil metros de altitude, numa temperatura a 0 °C. Por isso são constituídas de microscópicos cristais de gelo.
    * Cirrocumulus (Cc): delgadas, agrupam-se num padrão regular. São compostas de elementos extremamente pequenos e em forma de grãos e rugas. Servem para indicar a base de corrente de jato e turbulência.
    * Cirrostratus (Cs): em forma de um véu quase transparente, fino e esbranquiçado, que não oculta o sol ou a lua, e por isso dão origem ao fenômeno de halo (fotometeoro). Se localizam logo abaixo dos Cirrus e também são formados por cristais de gelo. 
* Altostratus (As): camadas cinzentas ou azuladas, muitas vezes associadas a altocumulus; são compostas de gotículas superesfriadas e cristais de gelo; não formam halo pois encobrem o sol de modo a "filtrar" sua luz; dão origem à precipitação leve e contínua.
    * Altocumulus (Ac): lençol ou camada de nuvens brancas ou cinzentas, tendo geralmente sombras próprias. Constituem o chamado "céu encarneirado".
   * Stratus (St): muito baixas, em camadas uniformes e suaves, cor cinza; coladas à superfície é o nevoeiro; apresenta topo uniforme (ar estável) e produz chuvisco (garoa). Quando se apresentam fraccionadas são chamadas fractostratus (Fs).
    * Stratocumulus (Sc): lençol contínuo ou descontínuo, de cor cinza ou esbranquiçada, tendo sempre partes escuras. Quando em vôo, há turbulência dentro da nuvem.
    * Nimbostratus (Ns): aspecto amorfo, base difusa e baixa, muito espessa, escura ou cinzenta; produz precipitação intermitente e mais ou menos intensa.
    * Cumulus (Cu): contornos bem definidos, assemelham-se a couve-flor; máxima frequência sobre a terra de dia e sobre a água de noite. Podem ser orográficas ou térmicas (convectivas); apresentam precipitação em forma de pancadas; correntes convectivas. Quando se apresentam fraccionadas são chamadas fractocumulus (Fc). As muito desenvolvidas são chamadas cumulus congestus. É sinal de bom tempo.
    * Cumulonimbus (Cb): nuvem de trovoada; base entre 700 e 1.500 m, com topos chegando a 24 e 35 km de altura, sendo a média entre 9 e 12 km; são formadas por gotas d'água, cristais de gelo, gotas superesfriadas, flocos de neve e granizo. Se apresentarem forma de bigorna, são Cumulonimbus Incus: o topo apresenta expansão horizontal devido aos ventos superiores, lembrando a forma de uma bigorna de ferreiro, e é formado por cristais de gelo, sendo nuvens do tipo Cirrostratus (Cs).

terça-feira, 5 de outubro de 2010

Os segredos da Natureza: Fenômeno Natural

Esta erupção de lava em forma de parábola ilustra a Lei da queda dos graves de Galileu. É a expressão concreta, sem influência humana, de uma lei da natureza.Um fenómeno natural é um acontecimento não artificial, ou seja, que ocorre sem a intervenção humana. Note-se que até as acções humanas (um automóvel em andamento, por exemplo) continuam sempre sujeitas às leis naturais, contudo, não são consideradas, neste sentido, fenómenos naturais, já que dependem do arbítrio ou vontade humana. Os fenómenos naturais podem, isso sim (ou não), influenciar a vida humana que a eles está sujeita, como a epidemias, às condições meteorológicas, desastres naturais, etc. Repare-se que, na linguagem vulgar, fenómeno natural aparece quase sempre como sinónimo de evento incomum, espantoso ou desastroso sob a perspectiva humana. Contudo, a formação de uma gota de chuva é um fenómeno natural da mesma forma que um furacão.
Na linguagem vulgar, contudo, dado o sentido comum do termo "fenómeno", esta expressão refere-se, em geral, aos fenómenos naturais perigosos também designados como "desastres naturais". A chuva, por exemplo, não é, em si, um "desastre", mas poderá sê-lo, na perspectiva humana, caso algumas condições se conjuguem. Deficiente manutenção dos equipamentos de drenagem da água, mau planeamento urbanístico, com a construção de estruturas em locais vulneráveis a cheias ou outros podem ocasionar efeitos desastrosos para o ser humano.